home *** CD-ROM | disk | FTP | other *** search
- /* randist/gauss.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- #include <config.h>
- #include <math.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_rng.h>
- #include <gsl/gsl_randist.h>
-
- /* Of the two methods provided below, I think the Polar method is more
- * efficient, but only when you are actually producing two random
- * deviates. We don't produce two, because then we'd have to save one
- * in a static variable for the next call, and that would screws up
- * re-entrant or threaded code, so we only produce one. This makes
- * the Ratio method suddenly more appealing. There are further tests
- * one can make if the log() is slow. See Knuth for details */
-
- /* Both methods pass the statistical tests; but the polar method
- * seems to be a touch faster on my home Pentium, EVEN though we
- * are only using half of the available random deviates!
- */
-
- /* Polar (Box-Mueller) method; See Knuth v2, 3rd ed, p122 */
-
- double
- gsl_ran_gaussian (const gsl_rng * r, const double sigma)
- {
- double x, y, r2;
-
- do
- {
- /* choose x,y in uniform square (-1,-1) to (+1,+1) */
-
- x = -1 + 2 * gsl_rng_uniform (r);
- y = -1 + 2 * gsl_rng_uniform (r);
-
- /* see if it is in the unit circle */
- r2 = x * x + y * y;
- }
- while (r2 > 1.0 || r2 == 0);
-
- /* Box-Muller transform */
- return sigma * y * sqrt (-2.0 * log (r2) / r2);
- }
-
- /* Ratio method (Kinderman-Monahan); see Knuth v2, 3rd ed, p130 */
- /* K+M, ACM Trans Math Software 3 (1977) 257-260. */
-
- double
- gsl_ran_gaussian_ratio_method (const gsl_rng * r, const double sigma)
- {
- double u, v, x;
-
- do
- {
- v = gsl_rng_uniform (r);
- do
- {
- u = gsl_rng_uniform (r);
- }
- while (u == 0);
- /* Const 1.715... = sqrt(8/e) */
- x = 1.71552776992141359295 * (v - 0.5) / u;
- }
- while (x * x > -4.0 * log (u));
-
- return sigma * x;
- }
-
- double
- gsl_ran_gaussian_pdf (const double x, const double sigma)
- {
- double u = x / fabs (sigma);
- double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2);
- return p;
- }
-
- double
- gsl_ran_ugaussian (const gsl_rng * r)
- {
- return gsl_ran_gaussian (r, 1.0);
- }
-
- double
- gsl_ran_ugaussian_ratio_method (const gsl_rng * r)
- {
- return gsl_ran_gaussian_ratio_method (r, 1.0);
- }
-
- double
- gsl_ran_ugaussian_pdf (const double x)
- {
- return gsl_ran_gaussian_pdf (x, 1.0);
- }
-